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ABSTRACT

By using the gas-dynamic functions on the surface bounding the

"region of influence," the problem of finding axisymmetric bodies with

miuimumwave drag has been treated. The method allows the determinatiou

of the minimum-drag shape between two prescribed points when the flow

properties at the upstream points are known. Application of the method

to the determination of minimum-drag body nose and boattail shapes is

presented.
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CERTAIN VARIATIONAL PROBLEMS IN THE GAS DYNAMICS OF

AXISYMMETRIC SUPERSONIC FLOW*
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An object of many gas dynamics investigations is the finding of

bodies that possess the minimum wave resistance. Relatively a long time

ago appeared the solution of the linearized equations. For the varia-

tional problems of gas dynamics, Nikolskl (ref. l) proposed introducing

into consideration the surface bounding the 'region of influence.'

Through gas-dynamic functions on such a surface the forces acting on the

body can be expressed without integrating the equations of gas dynamics.

The first exact solution of the variational gas dynamical problem was

obtained by Guderley and Hantsch. In their work (ref. 2), the problem

is reduced to the numerical integration of a system of equations.

The problem here considered is a degenerate variational problem.

A method of solution of such problem has been worked out by Okhotsimski

(ref. 3). The author is deeply grateful to Okhotsimski for his great

help lu the conduct of this work.

i. The axisymmetric flow of a gas is in cylindrical coordinates

determined by the equation of continuity

_r@w cos @ _rDw sin

8x + 8r - 0 (i.I)

the equation of motion

w cos# _w cos # 8w cos _ i 8p
" 8x + w sin # 3r + -0_-_ --0 (i.2)

the equation of Bernoulli

w 2 _ p=l_+l
-Z+_--n-Yp 2 _-I (i._)

*Nekotorye variatsionnye zadachi gazovoi diuamiki osesimmetrichnykh

sverkhzvukovykh techenii. Prikladnaya matematika i mekhanika, t. XXI,
no. 2j 1957, pp. 195-206.
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and the equation expressing the constancy of the entropy

p__= _constant in the irrotational case
p_ _f(@) in the flow with vorticity

(1.4)

where x,r are Cartesian coordinates in the meridional plane of flow,
is the stream function, w the velocity referred to the critical flow

velocity a., @ the angle of inclination of the velocity to the flow
axis, _ the adiabatic exponent, 0 the density of the gas referred to
the density O. of the oncomingflow, and p the pressure referre_ to
the product 0 a_.

Along the characteristics of the system of equations defining the

irrotational flow the following relations are satisfied:

First family:

dr = tan (# + e)dx, d_ +
I + cos 2_ sin _ sin

dm + dr= 0
x- cos 2_ r sin (_ + _)

(1.5)

Second family:

dr = tan (@ - _)dx, d@ -
I + cos 2_ sin # sin

d_ dr = 0
x - cos 2_ r sin (_ - _)

(1.6)

where _ denotes the Mach angle determined by the relation

Sin2 c_= xp

0w 2

Along the streamlines the relation is satisfied

dr = tan _ dx (1.7)

Equation (i.I) permits introducing the stream function by the formula

d_ = row(cos _ ds - sin @ dx) (1.8)

2. Let us consider the region of flow of a gas about a body of

revolution (fig. 1). Let the gas flow in the direction from the point A

to the point B and let the preceding part of the flow be known; that is,

the characteristic of the first family AE is known. We must find the

generatrix of the body AB that assures the minimum local resistance.
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Through the point B is dra_ua characteristic of the second family

up to the intersection with the characteristic AE at the point C. The

region ABC, bounded by the characteristics and the body, will be denoted

as the region S.

We transform equation (1.2) with the aid of equation (I.I) to the
form

_-_ r(p + 0w2 cos 2 _) +_ rpw 2 sin _ cos _ = 0

We integrate both sides of this equation over the region S and by

Green's formula we pass to the integral over the contour L bounding the

region S; we obtain

ff[ r(p + Ow 2 cos E _) + _ rpw 2 sin _ cos dx dr

S

=_- r_ 2 sin _ cos _ dx + r(p + Ow 2 cos 2 %)dr = 0

LJ (2.1)

The contour integral (2.1) consists of the integrals over the gen-

eratrlx AB, the characteristic AC, and the characteristic BC. In each

of these integrals we eliminate dx, using respectively equations (1.7),

(i.5), and (1.6). The first of the integrals X is equal to

rB)C = pr dr (2.2)

r=r A

and differs from the wave resistance of the part of the body considered

only by a constant factor.

To determine the shape of the body givlngthe least wave resistance

it would be natural to seek to obtaln the minimum of the function (2.2)

directly. But for solving such problem it is necessary to know the de-

pendence of p on the form of the generatrlx AB, and this can be ob-

tained only by solving the general problem of the flow. Since this solu-

tlon is unknown_ St is necessary to express _ through the integrals

over AC and BC with the aid of equation (2.1). This permits solving the

problem without recourse to attempts to seek the general integral of the

equations of the axially symmetric flow of a gas.



The magnitudes w and p are connected with _ and the stagnation
density DO by the formulas

w2 = _ +I
x - cos 2__

1
x-1

P -- PO cos

Using _hese equations in transforming the integral (2.1), we arrive
at the desired form for X:

X= PO IX. . °(=)_(=)- _
0_

=r A

cos ,_ ]--+ si_(_ + =)- r dr -

!

l-J
t'o
['o

re- o(_)_(_)- _

=rB

cos e )]siu(_ - _ r

where

1 x+l

2 x-I

We shall express the length X = xB - xA and the total discharge

of the gas _ = 0 through the characteristics AC and BC in terms of the

integrals over these contours.

From the first relations of (1.5) and (1.6), we readily obtain

_r rC _r rCX = cot_ + _)dr - cot(_ - _)dr

=r A =r B

(2.4)

Equation (1.8) permits obtainiog

Irc 1'T = 0 = -Ir'x'-'+'_ rc _(_)r dr _(_)r dr

P0 __ sin(_ + _) + sin(_ -

=rA J rmrB

(2.5)
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It is to be noted that the first of the integrals entering (2.5),

(2.4), and (2.5) are taken along the known characteristic AC and are

therefore functions only of the first limit. The second integrals in the

same equations are taken along the unknown characteristic BC. The func-

tions _(r) and _(r) entering these integrals are to be determined,

while the integrals themselves are functionals.

5. In the second relation of (1.6) in the characteristic of the

second family, there enters the combination to be integrated, which we

denote by

1 + cOS 2_

d_ = d_ - _ . cos 2_ d_

Integrating this equation we obtain

--_ + f(_), f(_) _-__+ 1 <_- 1 cot _I + m + constarc tan _ 1

(3.1)

For what follows, it is more convenient instead of the unknowns

m,¢ in the characteristic of the second family to introduce the unknowns

_,_ making use of equation (3.1).

Let us rewrite equations (2.3) to (2.5) and (1.6) in the new nota-

tions omitting certain constant factors:

rC @l(r,_,8)dr
= ;l(rc) - =r_

(3.2)

_r rC
#2(m,_)dr

X = F2(rc) - =rB

(3.3)

= o = F3(rc)+/rc[¥
Jr

=r B

¢5(r,_, B)dr (5._.)

%(r,_,_, dr) lO (3.2)



where

cF l = _(A)_(A) - -

rA

cos e R]____/A+ _in(e + A)

F 2 = cot(e + A)dR

=r

=/R_c _(A)RF5 sin(8 + A)

=rA

(3.6)

cos[# - f(=)] l
sin[p - f("cc)- c_]_r

¢2 = cot[_ - f(_) _ _]

_3 -- ..... _(_)_
sin[B - f(_) - _]

sin[p - f(m)]sin c_

r sin[_ - f(_) - _]

(3.7)

where R is the radius, A the Mach angle, and e the angle of inclina-

tion of the velocity to the characteristic AC.

We shall formulate the arising general variational problem of

Lagrange with isoperimetric conditions: For given constant rA, rB, and

X and functions A(R) and e(R) entering equations (5.6) to find functions

_(r) and _(r) that render the difference (3.2) an extremum for the iso-

perimetric conditions (5.3) and (5.4) and that satisfy the differential

condition (S.5).

The class of admissible functions will in what follows be determined

in considering the gas-dynamic properties of the problem.

There are considered here flows without shock waves within the

region ABC (fig. I). Hence there arises at once the requirement of con-

tinuity of the functions _(r) and 8(r). Moreover, the following con-
ditions must be satisfied:

_(rc) = A(rc), @(r c) = e(r C) (3.8)

!
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which express the continuity of the Mach angle and the inclination of the

velocity at the point C.

Remark. - We note first of all that the problem under consideration

is a degenerate one. In fact, the functions @l, @2, @5, and @4 do not

contain the derivative d_/dr, while they contain the derivative dS/dr

linearly. This leads generally to the nonsolubility of the variational

problem in the classical sense. The solution of the problem completely

or partially may not coincide with the integral of the system of Euler

equations; and, instead of the classical extremum, for which the firs%

variation of the functional is equal to zero, there may arise a border

extremum determined by the physical boundaries of the region of admissible
functions.

4. We shall seek the variation 5X in agreement with equation (3.5)

and conditions (5.3), (3.4), and (3.8). We construct the sum

j = F(rc)+ 4 ,=,_,_,7
r=r B

_r (_.l)

whet e

F(rC)= Fl(rc) + XF_(rc) - _F3(rc)

v(r) being variable and k and _ constant Lagrange multipliers to be

determined.

The problem arises of seeking the system of functions m(r), _(r)

that render the sum (4.1) an unconditional extremum and satisfy the cou-

ditions (3.8).

Under the condition @4(r,m,_,d_/dr) = 0, the sum J differs from

the sum _ by a constant magnitude, since X = coust, Y = 0. If these

conditions are satisfied on eff_cting the variation, the variation 5J _

coincides with the variation 5X_ since 5@4 = 5X = 5Y = 0.

In taking the variation of the sum (4.1), it is necessary to take

into account that the magnitude rB is given and therefore 8r B = O.



Moreover, the variations 8rC and 58C are connected, since the char-
acteristic AC is given. Finally, integrating by parts the expression
containing the derivative of the variation 58, we obtain

5J -- dF + _ + _ dr i 2 r=r C

+ _5_ +

=r B

8 "dr '

(4.2)

where the subscripts 1 and 2 denote the derivatives and variations taken

respectively along the characteristics of the first and second families.

If conditions (5.5) to (3.5) are identically satisfied, the varia-

tions 5J and 8_ agree for any values of w(r). We shall choose this

function in such manner that in formula (4.2) the expression with 58

drops out. We set the terms in front of the integral equal to zero; this

gives the conditions

1 dr 2 =r C

and the equation for the determination of v(r),

d _B = 0 (4.4)_6 -_ '

which must be satisfied identically on the entire characteristic BC.

The variation of the sum (4.1) assumes the following form:

_ _ _5_ dr (4.5)

_r B

Conditions (4.3) together with (5.8) become the boundary conditions

for determiningthe function__(r),B(r),and _(r).

To obtain the classical extremum, the expressio_ before the varia-

tion _ in formula (4.5) must be equated to zero. Together with (4.4)

and (3.5), this will give the system of equations.

I
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5. The system of equations @6 = O, (4.4), and (5.5) written out

more fully has the form

[, + i sin 2(_ - .f)..- 2(I + cos 2_)cos _]+ k°(_)_(_) 2 sin 6 r

+ ._(=)[_(=)oos(_ - f - 6) - (x + _)cot = si.(_ - f - =)1

- _ [sin 2 2_ - 2(x - cos 2c_)slng(8 - f)] = 0
2r 2

(5.1)

dv I

dr sin2(_. f - 6)

V

{r_(_)[o(_)cos= - _ cos(_- f - 6)] - x+ [ si_2

(5.2)

d___= s±n(_- f)sin6
dr r sin(_ - f - 6)

(5.3)

where

_(_) = i - x + 2 cos 26

The fact should be observed that equation (5.1) is not a differential

equatlon.

Remark. - The equations of the first order (5.2) and (5.5) give two

arbitrary factors in determining the functions. Moreover, rC and the

values of the constants k and W are still not determined. In all,

there are five arbitrary factors in determining the functions.

To obtain the extremum in the classical sense, the required func-

tions must be subjected to the boundary conditions (3.8) and (4.3) and

the isoperimetric conditions (3.3) and (5.4). _ Altogether this gives

six conditions.

From this it becomes evident that the problem is insoluble if the

condition is imposed that the required functions must satisfy equations

(5.1) to (5.3) over the entire characteristic BC.

6. Equation (5.3)connects the functions _(r) and 8(r). If the

system of boundary conditions is complete, one of the functions completely

determines the other. Let us consider the function _(r) on the char-

acteristic BC and for this let us turn to figure 2. The shape of the

curve _(r) plays no part in the further considerations. For simplicity

we show in figure 2 one of the forms of behavior of 6(r). The function

m(r) on the characteristic AE is represented by the curve ae.
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The theory considered is suitable only for supersonic flows. Hence,
the upper natural boundary of the region of variation of _ is the line

The lower boundary of the region can be determined by considering
the gas-dynamic properties of the problem. All possible functions e(r)
on the characteristic BC can be obtained only by a changeof the flow
boundary, the generatrix of the body AB (fig. I). Wemust emphasize that
gas flows are considered that have only one boundary ABand that do not
contain shock waves in the triangle ABC.

To each value r = r C on the given characteristic AE corresponds a
completely determined value @= _C" That flow of the gas must be found
for which the curve _(r) on the characteristic DCwill be situated below
all other possible curves. Physically 3 it is evident that the greatest
expansion of the flow is assured by the presence of a break of the gen-
eratrix AB at the point A. In this case (refs. 4 and 5)3 the characteris-
tics of the first family diverge as a bundle of lines from the point A
(fig. I) up to a certain characteristic AD, on which, at the point A, the
angle of inclination of the velocity coincides with the angle of the
tangent to the contour AB at the point A. The characteristic AD is a
line of weak discontinuity in the region of flow. In figure 2 let the
relation _ = _.(r) on the characteristic of the second family CDof the
flow be represented by the curve cd. The characteristic CBthen con-
sists of the segment CDnot coinciding with the extremal and the extremal
segment DB.

Weshall call a function m(r) admissible if it is a continuous
function satisfying the inequality m.(r) _ re(r) _ _/2. The admissible
functions _(r) are then also completely determined.

7. Taking the previously explained properties of the characteristic
BCinto account, we shall derive the boundary conditions for the segment
BDof the characteristic (fig. I).

Wewrite the sum (4.1) in the form

B=
r rC

@dr + @dr (7.1)
=rD

Let us consider the second integral of (7.1). In varying the upper
limit, only variations along the given characteristic AE are permitted.
The variation of the lower limit is broken up into two. It is admissible
in the first place to vary rD along the characteristic of the second
family; that is, to vary the region occupied by the bundle of characteris-
tics. In the second place, it is permissible to vary r D along the

_J
!
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characteristic of the second family, but this variation must not now be

carried out independently of the variation of rc, because with rC

given the entire characteristic DC is determined. In connection with

this it is more convenient to vary the second integral of (7.1) as a whole,

as a function of re, not forgetting of course also the variation along

the characteristic of the second family. The variation of this integral

is easily obtained by considering an integral of the type (7.1) over the

contour ADC for fixed characteristics AC and AD. The integral over DC

is then expressed through the integrals over AC and AD.

It is necessary also to bear in mind that on BC all functions are

continuous. From (3.5) the continuity of the derivative dB/dr then

also follows.

Carrying out all the required calculations and taking into account

the continuity of _, _, and dS/dr, we arrive at an expression for 5J

agreeing with (4.2), if in the latter we replace the point C by the point
D. The arbitrariness in the choice of the characteristic AD renders the

problem soluble.

The system of equations for constructing the characteristic BD

remains unchanged and agrees with (5.1) to (5.5).

Equating the expressions before the integral in the expression for

5J to zero we obtain

drD L\a/
r 1 r=r D

(7.2)

 (rB)= o (7.3)

Equations (_.3), (3.4), (5.8), (7.2), and (7._) form a complete

system of boundary conditions for the solution of the problem.

8. On the characteristic BD, assuring a minimum of the resistance

(fig. 1), equations (5.1) to (5.3) must be satisfied for the boundary

conditions (3.8) and (7.2) at the point D and the condition (7.3) at the

point B. We introduce an arbitrary characteristic of the first family

GF. The segment of the generatrix GB has no effect on the flow to the

left of GF. Therefore the part of the generatrix GB should possess

minimum resistance for the given characteristic GF and the points G and

B (otherwise, a decrease of the resistance of the segment GB decreases

the resistance of the entire generatrix AB). On the segment of the

characteristic FB, equations (5.1) to (5.3) are satisfied_ and at point

B the condition (7.3). Hence, at the point F the transversality condi-

tion (7.2) written for r = rF must be satisfied. This condition, by

•- ,
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virtue of the arbitrariness of choice of the characteristic GF, is satis-

fied also on the entire characteristic BD. Hence, it must be an integral

of the system (5.1) to (5.5). In expanded form, (7.2) is given by

[ l l ]• (_)r sin(e + =) + sin(e - _) [_ " _(_)cos #]

sin _ sin o.)- k[cot(¢ + m) - cot(¢ - c_)] + v r sin(¢ - -- 0
1

(8.1)

From equations (5.1)_ (5.2)_ and (8.1), we eliminate k and _. As a

result we obtain a linear homogeneous differential equation of the first

order for determining v(r). Recalling condition (7.3), we at once con-
clude that

_,(r)- o (8.2)

The two obtained integrals of the system of equations satisfy the

boundary conditions and together with (5.1) permit finding the expressions
for re(r) and _(r). In place of equation (5.1) it is simpler to make

use of equation (5.2), substituting in it v = O:

Eliminating

r',:(_,)[o(_,)oos_,- _ cos(_- _)]= x

k from (8.1) and (8.S) gives

(8.3)

Cx x + 1 cos(a + _)- cos _= cos _ = _ (8.4)

Substitution of @ from (8.4) in (8.3) gives the equation connecting
and r:

i x+l

r cos2_] _ :_f - cos 2_

_/..,_+1_cos 2_-_2c°s2_] =lxl
. _2 cos _ cos 2_ - I_ sin 26

(8.S)

Finally, eliminating g from (8.1) and (8.5), we obtain the equation

L

_o
_0
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2 w.-i

r
cos 2=/ cos 2e cos e

=k (8.6)

which permits writing down the expression for _(_):

¢= sign ¢D larc sin [_COSr

! w.+l i

i- cos 2_ - coscos _ f + 1
(.

In this formula there is attached to the magnitude @ the symbol

#D in accordance with the following considerations. The magnitude k

is constant; if the magnitudes _ _ x/2 and @D _ O, the magnitude

is not equal to zero anywhere on the characteristic BD, as follows from

(8.6) and, being a continuous function, does not change sign. If @ = 0

at one point, then _ _ 0 on the entire characteristic BD.

The magnitudes x and _ on the characteristic BD are readily ex-

pressed in quadratures with the aid of equations (1.6) and (1.8).

The obtained formulas actually give the solution of the problem.

This may be confirmed directly by a check.

The magnitudes k and U are obtained from the known r, _, and

at any point from formulas (8.6) and (8.4).

It is of interest to observe that any streamline HF of the obtained

field of motion of the gas (fig. l) is an extremal for a given character-

istic AD and the points H and F, since on the characteristic DF equa-

tions (5.1) to (5.3) and all boundary conditions are satisfied.

The generatrix AB is obtained as solution of the p_oblem of Goursat

between the characteristic AD and the now known characteristic BD.

9. Up to now we have considered the required conditions for an

extremum. In the problem under consideration the minimum of the sum
must be obtained.

Again we turn to figure 2 and recall expression (4.5) for 5_.

Let there be found a solution satisfying equations (5.1) to (5.3)

and all boundary conditions. By virtue of equation (5.1), the equation

@_ = 0 is satisfied on the entire curve bd} on the curve cd, generally

speaking, @_ _ O. The minimum of the sum _ will occur in the case
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where @_>0 Tor 8_ > 0 and @_< 0 for _ < O. In fact, for 5_ > 0
on the curve bd, we then have 5_> 0, for _ < 0 we have 6X > O, as
follows from equation (4.5). Moreover, on the curve cd in this case
@__ O. The contrary case is impossible, since on the curve cd the least
of all possible values of m(r) occurs. By virtue of this property, the
curve cd is admissible to the variation on it of 8_> 0. From @_£ 0
and (4.5), it follows that these permissible variations lead to 57 > 0.
There occurs here a border extremum- that is, existing only because of
the positiveness of the admissible variations 8_.

Let us check the possibility of such variation of the obtained curve
cdb for which the sum X decreases. On the segmentcd with the exception
of the point dA the admissible variations FxL> 0 lead, as has been ex-
plained, to 5X > 0 by virtue of @m> 0. The sign of @m can be checked
for example by the direct computation of @m on cd. At the point d every
infinitely small element of the curve _(r) not coinciding in direction
with db leads to 5X> O, if @c_> 0. In fact, by virtue of equation
(3.5), the variation 8_ has a higher order of smallness than the varia-

tion 8_; hence, the sign of the magnitude @m on the element of the

curve considered is conditioned by the sign of @c_. Thus, the minimum

is assured by the coincidence of this element with an element of the

curve db. For the following point the same considerations hold true.

By passing from one point to the next we can see that the entire curve
cdb assures a minimum X.

It is necessary also to check the sense of the extremum from the

boundary conditions.

If the boundary conditions (7.2) and (7.3), on satisfying conditions

(3.3)# _3.&), and (3.8) and the equations of the problem, give the minimal
value ^min, then we must have

>x- in for vB 0 (9.1)

with observance of conditions (7.2), (3.3), (3.4), (3.8), and equations
(5.I) to (5.3), and

u'

x"> xmin (9.2)

for

I"°' [I'.l°I l]l,o
drD + @ + v dr I " 2 r=r D

i

_0
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withobservanceof co_ditio_ (7.3),(3.3),(3.4),(3.8),and equations
(5.1) to (s.3).

Tne inequalities (9.1) and (9.2) can likewise be checked on carrying

out the computations. In both cases of course all the conditions must

be satisfied only in choosing some new point D in the family of

characteristics.

I0. Let us consider the problem of the nozzle. This problem is

solved in an entirely similar manner. It has been considered in detail

and reduced to ordinary differential equations in the work of reference

2. In this case, too, we shall indicate the solution in finite form.

The functions _(r) and _(r) on the characteristic BD (fig. 3) are from

the same equations (8.5) and (8.7). The tables of gas-dynamic functions

in the region AOCD for the case of a two-dimensional transition surface

are given in reference 6.

Ii. In the case of vortical flow, it is also possible to obtain

simple relations on the required characteristic. As independent variable

in this case the stream function _ must be chosen.

On the required characteristic AC there must be given the entropy

function

l X

x-I x-I
_(_) ---p p

The problem of determining a body having minimum resistance reduces

for given functions A(_), e(_), @(_), R($), and magnitudes X, rA, r B

to determining the functions m($), _(_), r(_), rendering the functional

_- x+l

=0 - cos 2A
cos e + i sin A sin(@+ A)]X

- cos 2c5
sin _ sin(# -

K

minimum for the isometric condition
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X __/c[ < )os(@ + A) x + I I - cos 2A

=0 _q R _x x cos

1 x+l

2 X-I

+ cos(# r - (z) I){ + 1 1 - c°s 2cc)'2_ x cos
/

and the two differential conditions

I w+l

f )dr + _ × + 1 1 - cos 2c_

d"T q'ir "2_ × cos
sin(# - =) = 0

d4 i + cos 2_ dm

d_ x - cos 2_ d_

sin _ sin _ dr sin 2_ d in
=0

*(ll.1)

Without repeating the considerations, analogous to the preceding,

we present the final results.

The required characteristic BC consists of the nonextremal segment

CD, which is a characteristic of the limiting rarefaction flow, and the

extremal segment BD. On this segment the required functions are connected

by the following relations:

ix] in24 +_s-_nz= +_(l- cos 24)--o

1 ×+i

r: r 2_ x cos_ - x- cos z_
sin 2 _ = 0

where k is a constant and _ a variable Lagrange multiplier. The

magnitudes k and _(_D ) are determined from the last relations in terms

of the known magnitudes _, 4, r, and _ at the point D. The function

r(_) is determined by the differential equation (ii.i), and _(_) by the

equation

d_ _ _(_) (× + I I - cos 2=)
_-_= _r_ _ _ cos

[]Xlcos(_- =) + _ sin(_- =)]

l

[',o
Do
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12. As an illustration of the method 3 the computed generatrices of

bodies of revolution are represented in the figures. Bodies having a

given head cone are represented in figures 4 and 5_ the half-angle of

the cone is equal to 35 ° . The rear parts of the semi-infinlte cylinder

are represented in figures 6 and 7. The Mach numbers of the oncoming

flow MQ and the coefficients of the wave resistance of the bodies cx

are given on the figures.
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